Review of derivatives, gradients and Hessians:

- The gradient extends the notion of derivative, the Hessian matrix – that of second derivative.

- Given a function f of n variables x_1, x_2, \ldots, x_n we define the partial derivative relative to variable x_i, written as $\frac{\partial f}{\partial x_i}$, to be the derivative of f with respect to x_i treating all variables except x_i as constant. Let x denote the vector $(x_1, x_2, \ldots, x_n)^T$. With this notation, $f(x) = f(x_1, x_2, \ldots, x_n)$.

- The gradient of f at x, written as $\nabla f(x)$, is

$$\nabla f(x) = \left(\begin{array}{c}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2} \\
\vdots \\
\frac{\partial f}{\partial x_n}
\end{array}\right)$$

- The gradient vector $\nabla f(x)$ gives the direction of steepest ascent of the function f at point x. The gradient acts like the derivative in that small changes around a given point x^* can be estimated using the gradient (see first-order Taylor series expansion).

- Second partial derivatives $\frac{\partial^2 f}{\partial x_i \partial x_j}$ are obtained from $f(x)$ by taking the derivative relative to x_i (this yields the first partial derivative $\frac{\partial f}{\partial x_i}$) and then by taking the derivative of $\frac{\partial f}{\partial x_i}$ relative to x_j. So, we can compute $\frac{\partial^2 f}{\partial x_1 \partial x_1} = \frac{\partial^2 f}{\partial x_1 \partial x_2}$ and so on. This values are arranged into the Hessian matrix:

$$\nabla^2 f(x) = \left(\begin{array}{cccc}
\frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}
\end{array}\right)$$

The Hessian matrix is a symmetric matrix, that is $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$.
Computing gradients and Hessians:

Example

Compute the gradient and the Hessian of the function

\(f(x_1, x_2) = x_1^2 - 3x_1x_2 + x_2^2 \)

at the point \(x = (x_1, x_2)^T = (1, 1)^T \).

\[
\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{pmatrix} = \begin{pmatrix} 2x_1 - 3x_2 \\ -3x_1 + 2x_2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}
\]

\[
\nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix}
\]

Taylor series expansion:

Second-order Taylor series expansion:

\[
f(x) = f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0)
\]

First-order Taylor series expansion:

\[
f(x) = f(x_0) + \nabla f(x_0)^T (x - x_0)
\]

Example

\(f(x_1, x_2) = x_1^2 - 3x_1x_2 + x_2^2 \), compute \(f(1.01, 1.01) \) using first- and second-order Taylor series expansion at the point \(x_0 = (1, 1)^T \).

First-order Taylor series expansion:

\[
f(1.01, 1.01) = f(1, 1) + \nabla f(1, 1)^T \begin{pmatrix} 1.01 - 1 \\ 1.01 - 1 \end{pmatrix} = -1 + (-1, -1) \begin{pmatrix} 0.01 \\ 0.01 \end{pmatrix} = -1.02
\]

Second-order Taylor series expansion:

\[
f(1.01, 1.01) = f(1, 1) + \nabla f(1, 1)^T \begin{pmatrix} 0.01 \\ 0.01 \end{pmatrix} + \frac{1}{2} (0.01, 0.01) \nabla^2 f(1, 1) \begin{pmatrix} 0.01 \\ 0.01 \end{pmatrix} =
\]

\[
= -1 + (-1, -1) \begin{pmatrix} 0.01 \\ 0.01 \end{pmatrix} + \frac{1}{2} (0.01, 0.01) \begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 0.01 \\ 0.01 \end{pmatrix} = -1.0201
\]
Convex functions:

Definition A function f is convex if for any $x^1, x^2 \in C$ and $0 \leq \lambda \leq 1$

$$f(\lambda x^1 + (1 - \lambda)x^2) \leq \lambda f(x^1) + (1 - \lambda)f(x^2).$$

A square matrix A said to be positive definite (PD) if $x^T A x > 0$ for all $x \neq 0$.

A square matrix A said to be positive semidefinite (PSD) if $x^T A x \geq 0$ for all x.

Hessian $\nabla^2 f(x)$ is PD \implies strictly convex function.

Hessian $\nabla^2 f(x)$ is PSD \implies convex function.

Gradient $\nabla f(\bar{x}) = 0$ and Hessian $\nabla^2 f(\bar{x})$ is PSD \implies \bar{x} is a strict minimum of the function f.

Gradient $\nabla f(\bar{x}) = 0$ and Hessian $\nabla^2 f(\bar{x})$ is PD \implies \bar{x} is a minimum of the function f.

Checking a matrix for PD and PSD:

Leading principal minors $D_k, k = 1, 2, \ldots, n$ of a matrix $A = (a_{ij})_{[n \times n]}$ are defined as

$$D_k = \det \begin{pmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix}$$

A square matrix A is PD $\iff D_k > 0$ for all $k = 1, 2, \ldots, n$.

Example

Consider the function $f(x) = 3x_1^2 + 3x_2^2 + 5x_3^2 - 2x_1x_2$. The corresponding Hessian matrix is

$$\nabla^2 f(x) = 2 \begin{pmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

Leading principal minors of $\nabla^2 f(x)$ are

$$D_1 = 2 \cdot 3 = 6 > 0, \quad D_2 = 2 \cdot \det \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} = 2[3 \cdot 3 - (-1)(-1)] = 2 \cdot 8 = 16 > 0,$$

$$D_3 = 2 \cdot \det \begin{pmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix} = 2[3 \cdot 3 \cdot 5 + 0 \cdot 0 \cdot (-1) + 0 \cdot 0 \cdot (-1)] - [0 \cdot 0 \cdot 3 + 0 \cdot 0 \cdot 3 + (-1) \cdot (-1) \cdot 5]$$

$$= 2 \cdot 40 = 80 > 0$$

So, the Hessian is positive definite (PD) and the function is strictly convex.
A square matrix A is PSD \iff all the principal minors of A are ≥ 0.

The *principal minor* is

$$\det \begin{pmatrix} a_{i_1i_1} & \ldots & a_{i_1i_p} \\ \vdots & & \vdots \\ a_{i_pi_1} & \ldots & a_{i_pi_p} \end{pmatrix}, \text{ where } 1 \leq i_1 < i_2 < \ldots < i_p \leq n, \ p \leq n.$$